

PARTNER | SOLVE | DELIVER

IC Testing - Reed Relays

Reed Relays Are a Key Component in Testing Integrated Circuits

Introduction

Humanity has changed dramatically as they carry out our daily endeavors, by the invention of the integrated circuit nearly 50 years ago. Whether we are checking the time on our wrist watch, making a phone call, watching children play with their electronic toys, or at work/home on our computer, etc, etc, integrated circuits are at work getting the job done. Chip designers continue to develop new integrated circuits that are smaller, faster acting and have more switching gates. These millions of gates per chip all need to be tested for satisfactory operation. Test equipment, some of which costs millions of dollars, are designed to test these chips on a 24 hour and 7 day basis.

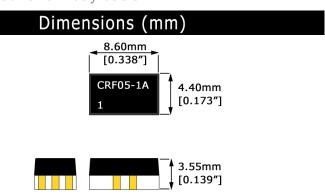


Figure 1. CRF physical layout

Because there are so many gates to be tested, test speed is essential. The tester needs to incorporate switches in the tester to isolate all points, and be able to carry the information using fast pulses. These fast pulses are in the picosecond range allowing billions of bits of information to be transferred per second. These switches used in the tester have to be carefully selected making sure they can switch and carry these fast pulses without distortion and operate in a reliable manner for billions of operations. Test equipment designers have found that Standex-Meder's specially designed ultra small relay series capably accomplishes the task for billions of operations.

Reed Relays are used extensively in test equipment testing integrated circuits

Integrated circuits are rapidly changing the world we live in. Every year new faster integrated circuit chips become available that are used in the marketplace to speed up computers, expand cell phone features, and present new products. These new chips present quite a challenge to automatic test equipment (ATE) makers that need to develop the tester to test them. Since each of the millions of gates in each chip needs to be tested time becomes an important obstacle. The test equipment designers need to use switches in their testers that will allow them to switch the various test voltages and currents for each gate. The designer has three options: electromechanical relays, semiconductor switches (pin diodes, FETs, etc,),

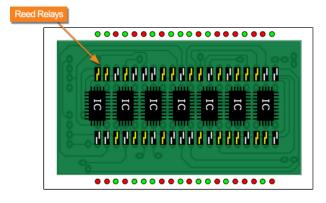


Figure 2. Integrated circuit test board showing IC's and reed relays.

or reed relays. Generally, the semiconductor switches offer too much leakage with too much capacitance that will literally interact with the test being performed, and therefore, its isolation in not good enough. Electromechanical relays are larger, very slow acting, and very costly for carrying high frequency pulses. MEDER's line of RF relays are specially designed to switch and pass fast digital pulses in a 50 ohm impedance environment while offering excellent isolation.

Features

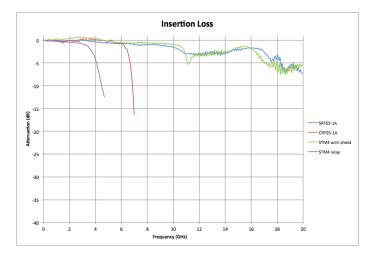
- High reliability
- Ideal RF characteristics
- Ideal for carrying fast digital pulses with skew rates less than 20 picoseconds.
- Ability to carry RF signals from DC up to 20 GHz (SRF)
- 50 Ω characteristic impedance
- Switch to shield capacitance < 0.5 picofarads
- Dielectric strength across the contacts 200 volts
- Contacts dynamically tested
- Surface mounted
- Very low profile
- BGAs available
- Rugged thermoset over-molded packaging
- Qual-shield arrangement

Specifications (@ 20°C) CRF Series							
	Min	Тур	Max	Units			
Coil characteristics							
Coil resistance	135	150	165	Ω			
Coil voltage		5.0		V			
Pull-In			3.75	V			
Drop-Out	0.85			V			
Switch characteristics							
Contact rating			10	Watts			
Switching voltage			170	V			
Switching current			0.5	Amps			
Carry current			0.5	Amps			
Static contact resistance			250	mΩ			
Dynamic contact resistance			250	mΩ			
Dielectric from voltage across the contacts	210			V			
Dielectric from voltage coil to contacts	1500			V			
Insertion Loss (@ the -3 dB down point)			7	GHz			
Operate time			0.1	msec			
Release time			20	µsec			
Operate temp	-10		100	°C			
Storage temp	-55		125	°C			

Applications

Any applications for testing integrated circuits such as: Digital memory chips, VLSI, ASICS, microprocessors, analog chips, mixed signal (analog and digital), discrete ICs.

	Surface Mount RF Reed Relay Series						
	Dimen	sions					
0 1		mm	inches	Illustration			
Series							
SRF	W	4.0	0.157				
	Н	3.2	0.126	The state of the s			
	L	7.5	0.295	1 1020			
CRF	W	4.4	0.173				
	Н	3.5	0.137				
	L	8.6	0.338				


Standex-Meder's SRF series using a quadshield that has only 0.5 pf from the open switch to its shield and only 0.2 pf across the open contacts. This series can switch and carry pulses shorter than 50 pico-seconds with no discernable effect on the pulse's leading and trailing edge. Standex-Meder's CRF series offers a flat insertion loss from DC up to 7 GHz, while the SRF series offers an insertion loss from DC to 20 GHz. Both series are ultra small with surface mount lead configurations.

Standex-Meder's reed relays use hermetically sealed reed switches that are further packaged in strong high strength thermoset molding compound, and can therefore be subject to various environments without any loss of reliability.

The reed relay is an excellent choice because it can operate reliably over a wide temperature range, and represents an economical way to carry out billions of switching operations.

Insertion Loss

Find out more about our ability to propel your business with our products by visiting www.standexmeder.com or by giving us a hello@standexelectronics.com today! One of our brilliant engineers or solution selling sales leaders will listen to you immediately.

